Optimal Stopping When the Future is Discounted
نویسندگان
چکیده
منابع مشابه
Discounted Optimal Stopping Problems for the Maximum Process
The maximality principle [6] is shown to be valid in some examples of discounted optimal stopping problems for the maximum process. In each of these examples explicit formulas for the value functions are derived and the optimal stopping times are displayed. In particular, in the framework of the Black-Scholes model, the fair prices of two lookback options with infinite horizon are calculated. T...
متن کاملOptimal Stopping When the Absorbing Boundary Is following After
We consider a new type of optimal stopping problems where the absorbing boundary moves as the state process X attains new maxima S. More specifically, we set the absorbing boundary as S − b where b is a certain constant. This problem is naturally connected with excursions from zero of the reflected process S−X . We examine this constrained optimization with the state variableX as a spectrally n...
متن کاملDiscounted optimal stopping for diffusions: free-boundary versus martingale approach
The free-boundary and the martingale approach are competitive methods of solving discounted optimal stopping problems for one-dimensional time-homogeneous regular diffusion processes on infinite time intervals. We provide a missing link showing the equivalence of these approaches for a problem, where the optimal stopping time is equal to the first exit time of the underlying process from a regi...
متن کاملDiscounted optimal stopping for maxima of some jump-diffusion processes∗
We present closed form solutions to some discounted optimal stopping problems for the maximum process in a model driven by a Brownian motion and a compound Poisson process with exponential jumps. The method of proof is based on reducing the initial problems to integro-differential freeboundary problems where the normal reflection and smooth fit may break down and the latter then be replaced by ...
متن کاملDiscounted optimal stopping for maxima in diffusion models with finite horizon∗
We present a solution to some discounted optimal stopping problem for the maximum of a geometric Brownian motion on a finite time interval. The method of proof is based on reducing the initial optimal stopping problem with the continuation region determined by an increasing continuous boundary surface to a parabolic free-boundary problem. Using the change-of-variable formula with local time on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematical Statistics
سال: 1967
ISSN: 0003-4851
DOI: 10.1214/aoms/1177698978